Appendix N

SCIENCE, TECHNOLOGY, ENGINEERING, AND MATH (STEM) YOUTH APPRENTICESHIP

SCIENCE & MATH PATHWAY BIOSCIENCE LAB FOUNDATIONS (UNIT 6)

Competency **1. Apply Bioscience Lab knowledge**

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Demonstrate Bioscience Lab systems understanding based on *current training and knowledge*
- Read Bioscience Lab materials discerning the information and concepts
- Locate and read reference materials and scientific publications

Learning Objectives

SCIENCE CONCEPTS

- Explain the importance of the scientific method to research
- Explain the steps in conducting research
- Explain the importance of controlled research
- Identify the major parts of a research report
- Define biotechnology/bioscience

BIOLOGY PRINCIPLES

- Compare types, chemical make-up, and function of bio-molecules
- Describe the basic components and functions of the cell
- Explain the structures of DNA and RNA
- Explain the process of replication, transcription and translation in a cell
- Explain the molecular basis for heredity and how genotype influences phenotype
- Discuss the genetic code and expression of a gene
- Analyze factors that influence gene expression
- Describe how biological life forms are structured from cells to organisms

• Discuss the inheritability of traits and evolution of new traits through genetic bio-molecules CHEMISTRY PRINCIPLES

- Differentiate between physical and chemical properties of matter
- Describe the structure of the atom and its effect on molecular formulas
- Identify different chemical reactions
- Identify between ionic and molecular compounds

HISTORY, TRENDS, & IMPACT

- Explain how protein biochemistry, molecular biology, microbiology and genetics are interrelated
- Identify the major innovations in the development of biotechnology/bioscience
- Describe current applications of bioscience
- Research emerging and future applications of bioscience
- Describe the emergence, evolution, and implications of bioethics
- Identify the steps in bringing a new bioscience product to market
- Describe the testing procedures to determine the safety of a new product

Science, Technology, Engineering, & Math (STEM) – Appendix N Science & Math Pathway: Bioscience Lab Foundations (Unit 6) • Describe the processes used in the production of molecules/organisms for use in industrial applications

Competency **2. Use aseptic technique**

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Wear the appropriate Personal Protective Equipment (PPE) as required
- · Disinfect surfaces before and after use as required
- Gather all materials prior to beginning procedure
- Prevent unwanted air current flow from doors and windows
- Sterilize or use sterilized equipment, reagents and/or supplies
- Hold caps or tops when removing them
- Hold open plates, tubes, lids, etc. at an angle in a manner to prevent unwanted exposure to uncontrolled environment
- Keep lids on as much as possible
- Avoid talking, sneezing, coughing when working with exposed analytes
- Discard contaminated materials properly

Learning Objectives

- Define asepsis
- Compare sterilization to disinfecting
- Compare different sterilization procedures for equipment, reagents and supplies
- Compare disinfecting products
- Compare equipment or lab lay-out, such as laminar flow hoods and clean rooms, used in maintaining asepsis
- Describe basic aseptic techniques in the bioscience laboratory
- Explain the purpose of reducing air currents and holding open items at an angle
- Demonstrate proper removal and holding of lids when removed

Competency

3. Clean & prepare glassware & instruments

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Rinse items thoroughly, as required, with the appropriate solvent
- Soak glassware & other items in warm aqueous solution of detergent
- Clean items to remove all residual matter
 - o Consults worksite professional for more aggressive cleaning protocols if required
- After cleaning, rinse thoroughly with water
- Dry items in required manner
- Place cleaned & dried items in sterilization pouches or wraps if required
 - Perform following steps as applicable to lab setting
 - Label and seals items properly
 - Place items in sterilization equipment
 - Ensure items remain apart during the sterilization cycle
 - Place empty canisters upside-down in order to prevent accumulation of water
 - Does not overload sterilizer trays
 - Allow a distance between trays to permit steam circulation
- Document cleaning procedure if required
- Return clean glassware & instruments to their proper storage locations

Learning Objectives

- Identify common glassware, instruments, and reusable testing supplies used in the laboratory
- Describe the use of common lab glassware and instruments
- Explain the sensitivity and care of glassware
- Describe proper dish washing technique for chemical glassware
- Describe other aggressive cleaning procedures to be used with residual materials
- Describe clean-up procedures used for flammable, corrosive and organic materials
- List the glassware and items requiring sterilization in your lab
- Describe the sterilization procedures required for glassware, instruments, or testing supplies in your lab

Competency

4. Prepare reagents, solutions, and/or buffers

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Review the appropriate protocol for safely preparing the item required including safety precautions
- Determine the concentration and amount required
- Calculate the amount of solute and solvent needed to prepare the desired amount
- Verify calculations with worksite professional
- Weigh or measure the solute
- Add solute to mixing flask
- Measure the solvent if needed
- Fill flask with about 2/3 solvent
- Stopper and mix flask by inverting OR as required by protocol
- Complete filling of remaining required solvent to mixing flask
- Mix as required
- Test and adjust pH if required by protocol
- Return solute and solvent to proper storage area
- Label and store prepared item as required per protocol
- Clean up

Learning Objectives

- Describe the proper storage and handling of various chemicals: Inorganic, Organic, acids, chlorinated chemicals, flammable, corrosive
- Define the common uses of reagents, solutions, and buffers in bioscience testing labs
- Explain how to avoid contaminating reagents during preparation
- Compare and contrast the properties of reagents, solutions, and buffers used in your lab
- · Describe hazards associated with the reagents, solutions and/or buffers used in your lab
- Define the uses of biological media
- Define the pH scale

Competency

5. Perform calculations and conversions

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Review the appropriate chart or reference materials to make calculations or conversions
- Identify given values
- Identify unknown values
- Determine the calculations or conversions and formulas that need to be performed
- Perform calculations or conversions as required
 - EXAMPLES
 - Perform calculations on parts per million and similar concentrations
 - Calculate the concentration of solutions in percent composition by mass
 - o Calculate the concentration of solutions in percent composition by volume
 - Calculate to prepare molar solutions
 - Calculate to prepare dilutions from stock solutions using the law of conservation of mass
- Verify calculations or conversions with worksite professional
- Record calculations or conversions as required

Learning Objectives

- Explain how to convert between U.S. standard measurements and metric measurements
- Explain the link between significant figures in calculations and the measuring devices used
- Describe the units involved in concentrations of mass, volume, molarity, molality, normality, ppm and ppb
- Use the mole concept to convert between moles and grams
- Explain how to calculate Percent by mass, Percent by volume, Molarity, Molality, Normality, parts per million (ppm) and parts per billion (ppb)

Competency 6. Weigh and measure accurately

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Review the protocol for accurately using the measuring equipment including safety precautions
- Ensure equipment is usable and current for calibration

MASS

- SOLIDS
 - Add pan or weighing paper
 - o Tare scale
 - Add solid to be weighed
 - Note reading
- LIQUIDS
 - \circ Add container to scale
 - o Tare scale
 - Add liquid to be weighed
 - Note reading

VOLUME

- LIQUIDS- Cylinder
 - Choose smallest container available to hold desired volume
 - Position at eye level to the device markings
 - Pour liquid into measuring device until it reaches the mark or measurement you need
 - Add liquid drop by drop until bottom of curved surface matches desired line
- LIQUIDS- Pipets
 - Choose appropriate sized pipet for sample required
 - Attach pump to pipet if needed
 - Set pipet volume OR pull up required amount of liquid
 - o Drain/dispense liquid to desired amount in container

TEMPERATURE

- Verify thermometer probe is operational OR that thermometer has no gaps in the liquid
- o Place thermometer or probe in middle area of material or space
- Allow thermometer or probe time to reach equilibrium
- Note reading
- · Record measurements in appropriate units and amount of significant figures as required
- Clean up equipment

Learning Objectives

- Explain how to properly carry and pour solid and liquid chemicals
- · List common units used in Bioscience labs for mass, volume, & temperature

Science, Technology, Engineering, & Math (STEM) – Appendix N Science & Math Pathway: Bioscience Lab Foundations (Unit 6)

- Explain how to zero and use scales
- Identify the proper glassware to deliver and contain specific volumes
- Demonstrate reading volume in glassware
- Explain how to pipette and micropipette different volumes of liquid correctly
- Convert measurements from U.S. Standard to metric and vice versa
- Correspond the correct number of significant figures in given values to the measuring device

Competency

7. Operate lab equipment properly

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Review the protocol for the procedure or lab equipment to be used including safety precautions
- Operate only equipment that he/she is trained on
- Choose correct equipment for the task
- Follow and completes any equipment check list prior to use
- Verify equipment is available for use and in working order
- Verify equipment is current for preventative maintenance and/or calibration
- Verify safety requirements and any Personal Protective Equipment (PPE) needed for equipment use
- Inspect equipment and work area for safety considerations
- Set up and prepare equipment for safe operation
 - Check settings
 - Check power
 - Check lubrication and fluid levels
- · Monitor equipment for safe operation while operating
- Follow protocol for clean up and shut down after use
- Properly shut down and label any equipment that is not operating as expected, if applicable
 - Follow Lock Out/Tag Out procedures as applicable
 - Promptly report abnormal equipment conditions to worksite professional
- Document use as required

Learning Objectives

- Explain the function of common bioscience laboratory tools and equipment
- Explain the safety precautions and routine care of common bioscience laboratory tools and equipment
- List mechanical, chemical, electrical, compressed air, and other equipment safety hazards at your facility
- Describe the basic procedure to be followed when a piece of equipment is not functioning properly in your lab
- Discuss the need for quality control (QC) samples and/or equipment controls in some bioscience lab equipment
- Explain how Lock Out/Tag Out procedures prevent accidents
- Explain standard use of common heating equipment
- Explain standard use of electrical current/power supply equipment
- Explain proper use of magnetic stirrers and hot plates

- Describe the safety and procedures involved in the use of flame
- Explain how to use a pipet and micropipetter
- Describe use of simple centrifugation
- Describe use of simple filtration
- Explain standard use of a microscope

Competency

8. Conduct testing according to protocol

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- · Review the testing protocol including safety precautions
- Select and set-up the correct equipment and supplies
- Prepare reagents, solutions, and/or buffers
- Prepare any controls required
- Locate and identify the sample(s) to be tested
- Prepare samples for testing according to protocol
- Test the sample(s) according to protocol **Using Aseptic Lab Technique** and Standard/Universal Precautions
 - Include Quality Control (QC) samples, if applicable
 - Operate lab equipment properly
- Records results
- Clean glassware and instruments
- Segregate, Recycle or Dispose of chemical, biohazardous, or infectious waste according to facility guidelines using Standard/Universal Precautions

Learning Objectives

- Discuss the need for quality control (QC) samples and/or equipment controls in bioscience testing
- Define positive and negative control
- Explain the procedures for safe Handling and Disposal of Chemical, Biological, and Radioactive Materials
- Define the purpose of Standard/Universal Precautions
- Explain the procedure for Standard/Universal Precautions in your lab
- Discuss the purpose of fume hoods and biological safety cabinets/hoods
- · Explain how to handle and dispose of laboratory wastes safely

Competency 9. Record results of testing accurately

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Select appropriate forms/records
- Use appropriate note-taking methods
- Record results, readings, measurements, calculations, times, etc. with appropriate scientific units carefully without transcription
- Record your identification
- Report any discrepancies or unexpected results to worksite professional
- Add data in electronic files if applicable

Learning Objectives

- Explain the importance of keeping laboratory records
- Explain the purpose and structure of a laboratory data book
- Describe the procedures followed in maintaining a laboratory notebook

Competency

10. Maintain accurate records

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Select appropriate forms/records
- · Label and/or code documents as required
- File forms/records in appropriate location
- Use appropriate computer codes, formatting, macros, charts, spreadsheets, etc.
- Verify data prior to entry/storage
- Maintain files as required
- Add Edit, Verify and Query data in electronic files if applicable

Learning Objectives

- Explain the purpose of Standard Operating Procedures (SOPs)
- Define terms used in bioscience lab records
- Demonstrate how electronic data is manipulated such as in a spreadsheet system
- Explain how data & files are stored and "backed up"
- Describe the purpose of security and ID information within record keeping systems

Competency

11. Monitor & maintain lab &/or personal inventory

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Check incoming containers for damage or contamination of items
- Verify that items ordered match the purchase order and description
- Identify any defective items
- Notify worksite professional and take appropriate corrective action when defective or missing items are identified
- Assist worksite professional to perform inventory checks
- Check that proper storage levels are maintained
- Rotate items to minimize old and outdated inventory
- Care for plants and animals as required by protocol
- Monitor temperature and atmospheric controlled spaces

Learning Objectives

- Explain the importance of maintaining an accurate inventory of biological and chemical materials
- Discuss the Chemical Hygiene Plan at your lab
- Identify the main types of inventory in bioscience labs
- Identify the costs of maintaining inventory
- Describe techniques used to order, stock, and maintain biological, chemical, and radioactive items
- Identify and describe hazards associated with biological, chemical, and radioactive items
- Explain how common safety, chemical, radioactive, and biological hazards are indicated on shipping labels
- Describe the proper storage, handling and disposal of various chemicals: Inorganic, Organic, acids, chlorinated chemicals, flammable, corrosive, radioactive
- Describe the proper storage, handling and disposal of biologic items